Uji Resistensi Ae. Aegypti dengan Cypermetrin Wilker Boombaru Palembang dengan Metode CDC Bottle Test

Authors

  • Artineke Artineke Kantor Kesehatan Pelabuhan Kelas II Palembang
  • Emilya Rosa Kantor Kesehatan Pelabuhan Kelas II Palembang
  • Dwi Hastuti Kantor Kesehatan Pelabuhan Kelas II Palembang
  • Haerul Latif Kantor Kesehatan Pelabuhan Kelas II Palembang

DOI:

https://doi.org/10.32583/pskm.v15i1.2263

Keywords:

aedes, cypermetrin, CDC bottle, resistensi

Abstract

Status Resistensi merupakan kondisi yang menunjukan tingkat kemampuan populasi vektor untuk bertahan hidup untuk mentoleransi dosis insektisida.Tujuan Menganalisis status kerentanan Ae. Aegypti dengan senyawa Cypermetrin dengan menggunakan 2 metode CDC Bottle di Wilker Boombaru.Jenis penelitian Control Time Series Desain dengan metode eksperimen. Dilaksanakan dengan metode uji kerentanan CDC Bottle dengan menggunakan kelompok pembanding (Control). Jumlah nyamuk sebelum pengujian adalah sebesar 22,7 dengan standar deviasi sebesar 2, 61116.Jumlah nyamuk sebelum paparan paling sedikit sebanyak 20 ekor/botol uji sedangkan jumlah nyamuk sebelum paparan paling banyak sebanyak 25 ekor/botol uji.Jumlah nyamuk setelah paparan paling sedikit adalah 0 ekor/botol uji, sedangkan jumlah nyamuk setelah paparan paling banyak adalah sebesar 25 ekor/botol.Hasil Uji Wilcoxon menghasilkan p value sebesar 0,010.Nilai tersebut lebih kecil dari nilai alpha (α0,05),maka keputusannya adalah menolak H0. Menunjukkan bahwa senyawa Agen Kimiawi Cypermetrin masih efektif untuk pengendalian nyamuk Ae.aegypti dewasa dengan tekhnik pengasapan (Foging).Untuk menjaga efektifitas pelaksanaan pencegahan demam berdarah seperti penyemprotan (fogging). Residu dalam dan luar ruangan, sangat penting untuk mengembangkan bahan kimia baru yang memberikan alternatif untuk insektisida eksisida yang potensinya resistensi di antara populasi vektor nyamuk. Mengevaluasi kerentanan populasi liar terhadap insektisida adalah langkah penting menuju penyaringan kandidat potensial dan penempatan mereka dalam kendali pengendalian.

References

Ajith, T. A., Barlas, S. A., Bukhari Bahauddin Zakariya at all (2018). Shahida Begum, Seema Iqbal and Sajid Ali.

Al-Amin, H. M., Gyawali, N., Graham, M., at all (2023a). Insecticide resistance compromises the control of Aedes aegypti in Bangladesh. Pest Management Science, 79(8), 2846–2861. https://doi.org/10.1002/PS.7462

Al-Amin, H. M., Gyawali, N., Graham, M., at all (2023b). Insecticide resistance compromises the control of Aedes aegypti in Bangladesh. Pest Management Science. https://doi.org/10.1002/ps.7462

Almet, J., Wuri, D. A., N Widi, A. Y., at all (2018). Status resistensi nyamuk Anopheles sp. terhadap insektisida malathion di Kota Kupang. Jurnal Kajian Veteriner, 6(2), 69–77. https://doi.org/10.35508/jkv.v6i2.04

Amelia-Yap, Z. H., Chen, C. D., Sofian-Azirun, at all (2018). Pyrethroid resistance in the dengue vector Aedes aegypti in Southeast Asia: Present situation and prospects for management. In Parasites and Vectors (Vol. 11, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13071-018-2899-0

Ashu, F. A., Fouet, C., Ambadiang, M. M., at all (2023). Vegetable oil-based surfactants are adjuvants that enhance the efficacy of neonicotinoid insecticides and can bias susceptibility testing in adult mosquitoes. PLOS Neglected Tropical Diseases, 17(11), e0011737. https://doi.org/10.1371/journal.pntd.0011737

CDC. (2017). Surveillance and Control of Aedes aegypti and Aedes albopictus in the United States.

Choirul Hidajat, M., Ambar Garjito, T., Prihasto Siswoko, S., at all (2021). Comparison of CDC Bottle Bioassay Test with WHO Standard Method for Assessment of Aedes Aegypti Susceptibility to Carbamates and Organophosphates Insecticides in Semarang, Indonesia. In Journal of Hunan University(Natural Sciences) (Vol. 48, Issue 6).

Corbel, V., Kont, M. D., Ahumada, M. L., at all (2023). A new WHO bottle bioassay method to assess the susceptibility of mosquito vectors to public health insecticides: results from a WHO-coordinated multi-centre study. Parasites and Vectors, 16(1). https://doi.org/10.1186/s13071-022-05554-7

Deng, S. Q., Yang, X., Wei, Y., at all (2020). A review on dengue vaccine development. In Vaccines (Vol. 8, Issue 1). MDPI AG. https://doi.org/10.3390/vaccines8010063

Field, L. M., Emyr Davies, T. G., O’Reilly, A. O., at all (2017). Voltage-gated sodium channels as targets for pyrethroid insecticides. European Biophysics Journal, 46(7), 675–679. https://doi.org/10.1007/s00249-016-1195-1

Fonseca-González, I., Cárdenas, R., Quiñones, M. L., at all (2009). Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldón populations from malaria endemic areas in Colombia. Parasitology Research, 105(5), 1399–1409. https://doi.org/10.1007/S00436-009-1570-2/METRICS

Gray, L., Florez, S. D., Barreiro, A. M., at all (2018). Experimental evaluation of the impact of household aerosolized insecticides on pyrethroid resistant Aedes aegypti. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-30968-8

Handayani, M. T., Raharjo, M., & Joko, T. (2023). Pengaruh Indeks Entomologi dan Sebaran Kasus Demam Berdarah Dengue di Kabupaten Sukoharjo. Jurnal Kesehatan Lingkungan Indonesia, 22(1), 46–54. https://doi.org/10.14710/jkli.22.1.46-54

Hasyim, H., Ihram, M. A., Fakhriyatiningrum, at all (2023). Environmental determinants and risk behaviour in the case of indigenous malaria in Muara Enim Regency, Indonesia: A casecontrol design. PLoS ONE, 18(8 August). https://doi.org/10.1371/journal.pone.0289354

Health Organization, W. (2022). Standard operating procedure for testing insecticide susceptibility of adult mosquitoes in WHO bottle bioassays.

Irawati, N. B. U., & Putri, N. E. (2021). Resistensi nyamuk Aedes aegypti terhadap cypermetrin di Kabupaten Klaten, Jawan Tengah. Ruwa Jurai: Jurnal Kesehatan Lingkungan, 15(1), 1. https://doi.org/10.26630/rj.v15i1.2608

Jangir, P. K., & Prasad, A. (2022). Spatial distribution of insecticide resistance and susceptibility in Aedes aegypti and Aedes albopictus in India. International Journal of Tropical Insect Science, 42(2), 1019–1044. https://doi.org/10.1007/S42690-021-00670-W/METRICS

Jangir, P. K., & Prasad, A. (2023). Insecticide susceptibility status on Aedes aegypti (Linn) and Aedes albopictus (Skuse) of Chittorgarh district, Rajasthan, India. Experimental Parasitology, 254. https://doi.org/10.1016/j.exppara.2023.108619

Kaleem Ullah, R. M., Gao, F., Sikandar, A., at all (2023). Insights into the Effects of Insecticides on Aphids (Hemiptera: Aphididae): Resistance Mechanisms and Molecular Basis. In International Journal of Molecular Sciences (Vol. 24, Issue 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/ijms24076750

Kampango, A., Furu, P., Sarath, D. L., at all (2021). Risk factors for occurrence and abundance of Aedes aegypti and Aedes bromeliae at hotel compounds in Zanzibar. Parasites and Vectors, 14(1). https://doi.org/10.1186/s13071-021-05005-9

Kawada, H., Higa, Y., & Kasai, S. (2023). Reconsideration of importance of the point mutation L982W in the voltage-sensitive sodium channel of the pyrethroid resistant Aedes aegypti (L.)(Diptera: Culicidae) in Vietnam. PLoS ONE, 18(5 May). https://doi.org/10.1371/journal.pone.0285883

Kemenkes R.I. (2018). Panduan Monitoring Resistensi Vektor Terhadap Insektisida.

Kim, D. Y., Hii, J., & Chareonviriyaphap, T. (2023). Transfluthrin and Metofluthrin as Effective Repellents against Pyrethroid-Susceptible and Pyrethroid-Resistant Aedes aegypti (L.) (Diptera: Culicidae). Insects, 14(9). https://doi.org/10.3390/insects14090767

Kotze, A. C., & Hunt, P. W. (2023). The current status and outlook for insecticide, acaricide and anthelmintic resistances across the Australian ruminant livestock industries: assessing the threat these resistances pose to the livestock sector. In Australian Veterinary Journal (Vol. 101, Issue 9, pp. 321–333). John Wiley and Sons Inc. https://doi.org/10.1111/avj.13267

Kraemer, M. U., Sinka, M. E., Duda, K. A., at all (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. https://doi.org/10.7554/eLife.08347.001

Kumar Shah, H., & Sreedhar, V. K. (2023). Ecacy of uralaner, a long acting acaricide against three species of vector mosquitoes (Diptera: Culicidae) under laboratory conditions-a potential candidate for drug based vector control. https://doi.org/10.21203/rs.3.rs-2803950/v1

Lees, R., Praulins, G., Davies, R., at all (2019). A testing cascade to identify repurposed insecticides for next-generation vector control tools: screening a panel of chemistries with novel modes of action against a malaria vector. Gates Open Research 2019 3:1464, 3, 1464. https://doi.org/10.12688/gatesopenres.12957.2

Li, Y., Li, Y., Wang, G., at all (2022). Differential metabolome responses to deltamethrin between resistant and susceptible Anopheles sinensis. Ecotoxicology and Environmental Safety, 237. https://doi.org/10.1016/j.ecoenv.2022.113553

Morrison, A. C., Zielinski-Gutierrez, E., Scott, T. W., at all (2008). Defining challenges and proposing solutions for control of the virus vector Aedes aegypti. In PLoS Medicine (Vol. 5, Issue 3, pp. 0362–0366). https://doi.org/10.1371/journal.pmed.0050068

Moyes, C. L., Vontas, J., Martins, A. J., at all (2017). Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. In PLoS Neglected Tropical Diseases (Vol. 11, Issue 7). Public Library of Science. https://doi.org/10.1371/journal.pntd.0005625

Nurul Hidayati Kusumastuti. (2014). Penggunaan insektisida rumah tangga antinyamuk Di desa pangandaran, kabupaten pangandaran.

Nurul-Nastasea, S., Yu, K. X., Rohani, A., at all (2023). Insecticide resistance status of Aedes aegypti and Aedes albopictus in Malaysia (2010 to 2022): A review. In Asian Pacific Journal of Tropical Medicine (Vol. 16, Issue 10, pp. 434–445). Wolters Kluwer Medknow Publications. https://doi.org/10.4103/1995-7645.378561

Owusu, H. F., Jančáryová, D., Malone, D., at all (2015). Comparability between insecticide resistance bioassays for mosquito vectors: Time to review current methodology? Parasites and Vectors, 8(1). https://doi.org/10.1186/s13071-015-0971-6

Parente, M. E., & Stoddard, P. (2023). Inducible Resistance to Pyrethroid Insecticide is Lacking in Adult Aedes aegypti Mosquitoes. FIU Undergraduate Research Journal, 1(1). https://doi.org/10.25148/URJ.010322

Patcharawan Sirisopa, K. T. T. C. and W. J. (2014). Resistance to Synthetic Pyrethroids in Aedes aegypti (Diptera: Culicidae) in Thailand.

Permenkes. (2017). Peraturan Menteri Kesehatan Republik Indonesia.

Rahayu, A., Saraswati, U., Supriyati, E., at all (2019). Prevalence and distribution of dengue virus in aedes aegypti in Yogyakarta city before deployment of wolbachia infected aedes aegypti. International Journal of Environmental Research and Public Health, 16(10). https://doi.org/10.3390/ijerph16101742

Ramzan, H., Manzoor, F., & Oneeb, M. (2023). Current status of insecticide resistance and its underlying mechanisms in Aedes aegypti (L.) in Punjab, Pakistan. Journal of Vector Borne Diseases, 60(1), 57–64. https://doi.org/10.4103/0972-9062.353250

Richards, S. L., Byrd, B. D., Reiskind, M. H., at all (2020). Assessing Insecticide Resistance in Adult Mosquitoes: Perspectives on Current Methods. Environmental Health Insights, 14. https://doi.org/10.1177/1178630220952790

Sathantriphop, S., Paeporn, P., Ya-Umphan, P., at all (2020). Behavioral action of deltamethrin and cypermethrin in pyrethroid-resistant aedes aegypti (Diptera: Culicidae): Implications for control strategies in Thailand. Journal of Medical Entomology, 57(4), 1157–1167. https://doi.org/10.1093/jme/tjaa019

Scott, M. L., Hribar, L. J., Leal, A. L., at all (2023). Characterization of pyrethroid resistance mechanisms in aedes aegypti from the Florida keys. American Journal of Tropical Medicine and Hygiene, 104(3), 1111–1122. https://doi.org/10.4269/AJTMH.19-0602

Shehzad, M., Bodlah, I., Siddiqui, J. A., at all (2023). Recent insights into pesticide resistance mechanisms in Plutella xylostella and possible management strategies. Environmental Science and Pollution Research, 30(42), 95296–95311. https://doi.org/10.1007/S11356-023-29271-5/METRICS

Shettima, A., Ishak, I. H., Lau, B., at all (2023). Quantitative proteomics analysis of permethrin and temephos-resistant Ae. aegypti revealed diverse differentially expressed proteins associated with insecticide resistance from Penang Island, Malaysia. PLOS Neglected Tropical Diseases, 17(9), e0011604. https://doi.org/10.1371/journal.pntd.0011604

Slade, R., & Richards, S. (2023). Impact of insecticide exposure method on susceptibility/resistance in aedes albopictus mosquitoes.

Sparks, T. C., Storer, N., Porter, A., at all (2021). Insecticide resistance management and industry: the origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme. In Pest Management Science (Vol. 77, Issue 6, pp. 2609–2619). John Wiley and Sons Ltd. https://doi.org/10.1002/ps.6254

Sriwidadi, T. (2011). Penggunaan uji mann-whitney pada analisis pengaruh pelatihan wiraniaga dalam penjualan produk baru.

Sukaningtyas, R., Udijono, A., Martini, M., at all (2020). PELABUHAN KELAS II SEMARANG. 8(6). http://ejournal3.undip.ac.id/index.php/jkm

Sulistiawati S, S., Masulun, M. J., Ramadhany, A. K., at all (2023). Effectiveness of the Aedes aegypti Mosquito Vector Control Program in Southeast Asia – A Systematic Review. Pharmacognosy Journal, 15(5), 969–975. https://doi.org/10.5530/pj.2023.15.180

Sutriyawan, A., Herdianti, H., Cakranegara, P. A., at all (2022). Predictive Index Using Receiver Operating Characteristic and Trend Analysis of Dengue Hemorrhagic Fever Incidence. Open Access Macedonian Journal of Medical Sciences, 10(E), 681–687. https://doi.org/10.3889/oamjms.2022.8975

Sutriyawan, A., Manap, A., Sulami, N., at all (2023). Analysis of entomological indicators and distribution of Aedes aegypti larvae in dengue endemic areas. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii, 100(4), 314–320. https://doi.org/10.36233/0372-9311-406

Umniyati, S. R. (2019). Resistance status of aedes aegypti to malathion and cypermethrin in Bengkulu City, Indonesia. https://www.researchgate.net/publication/339175737

Wang, Y., Wang, X., Brown, D. J., at all (2023). Insecticide resistance: Status and potential mechanisms in Aedes aegypti. Pesticide Biochemistry and Physiology, 195. https://doi.org/10.1016/j.pestbp.2023.105577

Wan-norafikah, O., Abdul Hamid Hasani, N., Bakar Nabila, A., at all (2023). PROFILING INSECTICIDE SUSCEPTIBILITY OF AEDES ALBOPICTUS FROM HOT SPRINGS IN SELANGOR, MALAYSIA. http://meridian.allenpress.com/jamca/article-pdf/39/3/183/3273239/i1943-6270-39-3-183.pdf

WHO. (2005). GUIDELINES FOR LABORATORY AND FIELD TESTING OF MOSQUITO LARVICIDES.

WHO. (2023). Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

Wigati, R. A., Lulus, D., (2012). Hubungan karakteristik, pengetahuan, dan sikap, dengan Perilaku masyarakat dalam penggunaan anti nyamuk di Kelurahan kutowinangun.

Yuan, H., Shan, W., Zhang, Y., at all (2023). High frequency of Voltage-gated sodium channel (VGSC) gene mutations in Aedes albopictus (Diptera: Culicidae) suggest rapid insecticide resistance evolution in Shanghai, China. PLoS Neglected Tropical Diseases, 17(6). https://doi.org/10.1371/journal.pntd.0011399

Zamin Khan, G., Khan, I., Ali Khan, I., at all (2017). Monitoring of resistance status in dengue vector Aedes albopictus (Skuse) (Culicidae: Diptera) to currently used public health insecticides in selected districts of Khyber Pakhtunkhwa-Pakistan. ~ 123 ~ International Journal of Mosquito Research, 4(3), 123–127.

Downloads

Published

2024-05-26

How to Cite

Artineke, A., Rosa, E., Hastuti, D. ., & Latif, H. (2024). Uji Resistensi Ae. Aegypti dengan Cypermetrin Wilker Boombaru Palembang dengan Metode CDC Bottle Test. Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, 15(1), 9–24. https://doi.org/10.32583/pskm.v15i1.2263