Resistensi Insektisida Malation, DDT, Piretreoid, dan Cypermetrin terhadap Nyamuk A.E Aegypti dan A.E Albopictus: Study Literature

Authors

  • Haerul Latif Fakultas Kesehatan Masyarakat, Universitas Sriwijaya
  • Elvi Sunarsih Fakultas Kesehatan Masyarakat, Universitas Sriwijaya
  • Yuanita Windusari Fakultas Kesehatan Masyarakat, Universitas Sriwijaya

DOI:

https://doi.org/10.32583/pskm.v13i3.1000

Keywords:

aedes, cypermetrin, DDT, resistensi

Abstract

Sekitar 3,9 miliar manusia rentan terhadap demam berdarah,96 juta kasus demam berdarah setiap tahun di 128 lokasi internasional.vektor potensial Ae.Aegypty dan Ae.Albopictus menyebabkan penyakit yang terkait dengan arbovirus seperti demam kuning,demam berdarah,demam chikungunya,dan virus zika.frekuensi penyemprotan insektisida berakhir dengan paparan berlebih,diikuti pertumbuhan di dalam tingkat resistensi insektisida.Tujuan untuk memberikan gambaran tentang faktor risiko kejadian demam berdarah dan resistensi insektisida yang dibahas dalam kajian pustaka berdasarkan sumber literatur. Metode Tinjauan sistematis mengikuti objek pelaporan untuk tinjauan Sistematis meninjau penelitian yang diterbitkan prevalensi resistensi insektisida pada Ae. Aegypti dan Ae.Albopictus.Hasil jenis insektisida kelompok malathion dan deltamethrin adalah 31,25%, sedangkan resistensi insektisida terendah terhadap nyamuk Ae.Aegepty dan Ae.Albopictus berasal dari kelompok karbamat dengan persentase 0%. Kesimpulan Penelitian kami merangkum pola resistensi insektisida Ae.Aegypti dan Ae.Albopictus yang mewakili setiap amerika serikat dari Eropa, Asia, Afrika, terutama berpusat pada malathion, DDT, permethrin, pestisida deltametrin yang paling lazim digunakan untuk pengendalian vektor.malathion insektisida terbaik terhadap Ae.Aegypti di Asia, permetrin bermanfaat dalam mengendalikan Ae.Albopictus.malathion insektisida terbaik Ae.Aegypti di Asia, bahkan sebagai permetrin tetap bermanfaat mengendalikan Ae.Albopictus.

 

References

Abd Naeeim, N.S., Abdul Rahman, N., 2022. Spatio-temporal clustering analysis using two different scanning windows: A case study of dengue fever in Peninsular Malaysia. Spat Spatiotemporal Epidemiol 41, 100496.

Aboulfadl, S., Mellouki, F., Ameur, B., at al., 2018. First Report of Susceptibility Status of the Invasive Vector: Aedes albopictus to insecticides used in vector control in Morocco.

Adedayo O. Odula Abiodum Obembe. (2021). Kerentanan Malathion dan Pirimiphosmethyl daripopulasi nyamuk Anopheles gambiae yang resisten terhadap bendiocarb di perkotaan Lagos, Nigeria.Ahmad, S., Shazmin, Rafique, M., at al., 2022. Organophosphates’ Pollution Status and Their Remediation Through Microbial Interaction in the Twenty First Century 177–203.

Ahmed, T., Hyder, M.Z., Liaqat, I., at al., 2019. Climatic conditions: Conventional and nanotechnology-based methods for the control of mosquito vectors causing human health issues. Int J Environ Res Public Health.

Azratul-Hizayu, T., Chen, C.D., Lau, at al., 2022. Phenotypic profile of Aedes albopictus (Skuse) exposed to pyrethroid-based mat vaporizers and underlying detoxification mechanisms: A statewide report in Selangor, Malaysia. Parasitol Int 86.

Bala, R., Kumar, M., Bansal, K., at al., 2016. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens Bioelectron 85, 445–449.

Benelli, G., Wilke, A.B.B., Bloomquist, at al., 2021. Overexposing mosquitoes to insecticides under global warming: A public health concern? Science of the Total Environment.

Bisset, J., Rodríguez, M.M., Fernández, D., 2006. Election Of Insensitive Acetylcholinesterase As A Resistance Mechanism In Aedes Aegypti From Santiago De Cuba.

Chung, H.-H., Tsai, C.-H., Teng, at al., 2022. The role of voltage-gated sodium channel genotypes in pyrethroid resistance in Aedes aegypti in Taiwan. PLoS Negl Trop Dis 16, e0010780.

Dong, K., Du, Y., Rinkevich, F., at al., 2014. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol 50, 1–17.

Dwi Lesmana, S., Maryanti, E., Susanty, at al., 2022. Organophosphate Resistance in Aedes aegypti: Study from Dengue Hemorrhagic Fever Endemic Subdistrict in Riau, Indonesia, Reports of Biochemistry & Molecular Biology.

Gan, S.J., Leong, Y.Q., bin Barhanuddin, at al., 2021. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit Vectors.

Gómez-Govea, M.A., Ramírez-Ahuja, M. de L., at al., 2022. Suppression of Midgut Microbiota Impact Pyrethroid Susceptibility in Aedes aegypti. Front Microbiol 13.

Hennings, S.M., 2022. Insecticide Susceptibility and Resistance Detection in Insecticide Susceptibility and Resistance Detection in Phlebotomus argentipes Sandflies (Diptera: Psychodidae: Sandflies (Diptera: Psychodidae: Phlebotominae) Phlebotominae).

Indriani, C., Tanamas, S.K., Khasanah, at al., 2023. Impact of randomised wmel Wolbachia deployments on notified dengue cases and insecticide fogging for dengue control in Yogyakarta City. Glob Health Action 16.

Lee, E., Nguyen, T.H., Nguyen, at al., 2022. Transient Introgression of Wolbachia into Aedes aegypti Populations Does Not Elicit an Antibody Response to Wolbachia Surface Protein in Community Members. Pathogens 11.

Li, H.-H., He, Z.-J., Xie, L.-M., at al., 2021. Article Evaluation of Xpert Carba-R Assay for the Detection of Carbapenemase Genes in Gram-Negative Bacteria.

Manikandan, S., Mathivanan, A., Bora, at al., 2022. A Review on Vector Borne Disease Transmission: Current Strategies of Mosquito Vector Control. Indian Journal of Entomology 1–11.

Martinez, J., Ross, P.A., Gu, X., at al., 2022. Genomic and Phenotypic Comparisons Reveal Distinct Variants of Wolbachia Strain wAlbB. Appl Environ Microbiol 88.

Mashudi, D.N., Ahmad, N., Said, S.M., 2022. Level of dengue preventive practices and associated factors in a Malaysian residential area during the COVID-19 pandemic: A cross-sectional study. PLoS One 17.

Mirzaei, M., Gorji Anari, M., Saronjic, at al., 2023. Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types. Environ Monit Assess 195.

Moher, D., Shamseer, L., Clarke, M., at al., 2016. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Revista Espanola de Nutricion Humana y Dietetica 20, 148–160.

Namias, A., Jobe, N.B., Paaijmans, at al., 2021. The need for practical insecticide-resistance guidelines to effectively inform mosquito-borne disease control programs. Elife.

Naw, H., Võ, T.C., Lê, H.G., at al., 2022. Knockdown Resistance Mutations in the Voltage-Gated Sodium Channel of Aedes aegypti (Diptera: Culicidae) in Myanmar. Insects 13.

Nwankwo, A., 2021. Quantifying the impact of insecticide resistance in the transmission dynamics of malaria. Chaos Solitons Fractals.

Ortiz, D.I., Piche-Ovares, M., Romero-Vega, at al., 2022. The impact of deforestation, urbanization, and changing land use patterns on the ecology of mosquito and tick-borne diseases in central America. Insects.

Rezende-Teixeira, P., Dusi, R.G., at al., 2022. What can we learn from commercial insecticides? Efficacy, toxicity, environmental impacts, and future developments. Environmental Pollution.

Sene, N.M., Mavridis, K., Ndiaye, at al., 2021. Insecticide resistance status and mechanisms in aedes aegypti populations from senegal. PLoS Negl Trop Dis 15.

Sparks, T.C., Crossthwaite, A.J., Nauen, at al., 2020. Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification - a tool for resistance management. Pestic Biochem Physiol 167.

Trajer, A.J., 2021. Aedes aegypti in the Mediterranean container ports at the time of climate change: A time bomb on the mosquito vector map of Europe. Heliyon 7.

Turner, H.C., Le Quyen, D., Dias, R., Huong, P.T., Simmons, C.P., Anders, K.L., n.d. An economic evaluation of Wolbachia deployments for dengue control in Vietnam.

Velkoska-Markovska, L., Petanovska-Ilievska, B., 2020. Rapid Resolution Liquid Chromatography Method for Determination of Malathion in Pesticide Formulation. Acta Chromatogr 32, 256–259.

Wei, Y., Zheng, X., He, S., Xin, X., at al., 2021. Insecticide susceptibility status and knockdown resistance (kdr) mutation in Aedes albopictus in China. Parasit Vectors 14.

WHO, 2022. Dengue and severe dengue [WWW Document]. URL https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed 10.26.22).

Zhou, X., Yang, C., Liu, N., at al., 2019. Knockdown resistance (kdr) mutations within seventeen field populations of Aedes albopictus from Beijing China: First report of a novel V1016G mutation and evolutionary origins of kdr haplotypes. Parasit Vectors 12.

Zulfa, R., Lo, W.-C., Cheng, P.-C., at al., 2022. Updating the Insecticide Resistance Status of Aedes aegypti and Aedes albopictus in Asia: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 7, 306.

Downloads

Published

2023-04-04

How to Cite

Latif, H., Sunarsih, E. ., & Windusari, Y. . (2023). Resistensi Insektisida Malation, DDT, Piretreoid, dan Cypermetrin terhadap Nyamuk A.E Aegypti dan A.E Albopictus: Study Literature. Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, 13(3), 761–770. https://doi.org/10.32583/pskm.v13i3.1000

Most read articles by the same author(s)

1 2 > >>