Metode Pengolahan Air Sederhana untuk Menurunkan Kadar Fe (Besi) pada Air Sumur: Studi Literatur
DOI:
https://doi.org/10.32583/pskm.v13i3.1024Keywords:
dampak fe, kandungan fe air, metode pengolahan feAbstract
Penyehatan air sebagai salah satu upaya bidang kesehatan yang diselenggarakan dalam rangka mewujudkan kualitas lingkungan yang sehat. Oleh karena air merupakan kebutuhan yang sangat vital bagi kehidupan manusia dan makhluk hidup lainnya. Apabila ada salah satu parameter yang tidak memenuhi syarat terutama kandungan Fe (Besi) tinggi pada air sumur maka air tersebut tidak layak untuk dimanfaatkan karena kualitas air tersebut tersebut dapat menimbulkan gangguan Kesehatan dan lingkungan serta dapat menimbulkan noda kekuningan pada pakaian yang dicuci. Penelitian ini dilakukan dengan tujuan untuk mengetahui alternatif metode pengolahan air sumur yang efektif terhadap penurunan kadar Fe (Besi) berdasarkan hasil penelitian yang telah dilakukan selama studi empiris lima tahun terakhir. Desain penelitian ini adalah Literature Review atau tinjauan pustaka dengan sumber literatur yang didapatkan dari Google Scholar, Science Direct yang kemudian data disintesis menggunakan metode naratif dengan mengelompokkan data hasil ekstraksi yang sejenis sesuai dengan hasil yang diukur untuk menjawab tujuan penelitian. Artikel yang disertakan terbatas pada artikel diterbitkan pada tahun 2018-2022, hasil pencarian mendapatkan total 72 artikel. Setelah dilakukan screening didapatkan 12 artikel untuk dianalisis. Hasil dari penelitian ini ditemukan 2 jenis metode pengolahan air dalam menurunkan kadar Fe (Besi) yaitu metode pengolahan air dengan sistem aerasi, dan Fitoremediasi. berdasarkan hasil dari Literature Review dengan total pembahasan 12 artikel.
References
AL-Huqail, A. A., Kumar, P., Eid, E. M., Taher, M. A., Kumar, P., Adelodun, B., Andabaka, Ž., Mioč, B., Držaić, V., Bachheti, A., Singh, J., Kumar, V., & Širić, I. (2022). Phytoremediation of Composite Industrial Effluent using Sacred Lotus (Nelumbo nucifera Gaertn): A Lab-Scale Experimental Investigation. Sustainability (Switzerland), 14(15). https://doi.org/10.3390/su14159500
Ali, K. Y., Saleh, B. M., & Adam, K. M. (2022). Assessment of Water Quality from Shallow Hand-Dug Wells in Dutse Town, North West Nigeria. Arid Zone Journal of Basic and Applied Research, 1(4), 47–61. https://doi.org/10.55639/607nmlkj
Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavas, I., Ünay, A., Abdel-Daim, M. M., Bin-Jumah, M., Hasanuzzaman, M., & Kalderis, D. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability (Switzerland), 12(5), 1–33. https://doi.org/10.3390/su12051927
Astuti, R. D. P., Mallongi, A., Amiruddin, R., Hatta, M., & Rauf, A. U. (2021). Risk identification of heavy metals in well water surrounds watershed area of Pangkajene, Indonesia. Gaceta Sanitaria, 35, S33–S37. https://doi.org/10.1016/j.gaceta.2020.12.010
Elmanfe, G. M., Tyeb, T. A., Abdelghani, K. A., Abdulathim, A. A., Asbeeh, J. A., Muftah, H. S., & Ali, A. F. (2022). Assessment of Groundwater Wells Pollution by Some Heavy Metals in El-Beida City Libya. Sebha University Journal Of Pure & Applied Sciences, 21, 3–8.
Fida, M., Li, P., Wang, Y., Alam, S. M. K., & Nsabimana, A. (2022). Water Contamination and Human Health Risks in Pakistan: A Review. Exposure and Health, October. https://doi.org/10.1007/s12403-022-00512-1
Fu, X., Niu, Z., Lin, M., Gao, Y., Sun, W., & Yue, T. (2021). Strengthened oxygen oxidation of ferrous ions by a homemade venturi jet microbubble generator towards iron removal in hydrometallurgy. Minerals, 11(12). https://doi.org/10.3390/min11121342
Gul Zaman, H., Baloo, L., Pendyala, R., Singa, P. K., Ilyas, S. U., & Kutty, S. R. M. (2021). Produced water treatment with conventional adsorbents and MOF as an alternative: A review. Materials, 14(24), 1–29. https://doi.org/10.3390/ma14247607
Hanafiah, M. M., Zainuddin, M. F., Nizam, N. U. M., Halim, A. A., & Rasool, A. (2020). Phytoremediation of Aluminum and Iron from Industrial Wastewater Using Ipomoea aquatica and Centella asiatica. Applied Science, 10.
Hasani, Q., Pratiwi, N. T. ., Effendi, H., Wardianto, Y., Guk, J. A. R. G., Maharani, H. W., & Rahman, M. (2020). Azolla Pinnata as Phytoremediation Agent of Iron ( Fe ) in Ex Sand Mining Waters. Chiang Mai University Journal Of Natural Science, 20(1), 1–12.
Hasani, Q., Pratiwi, N. T. M., Wardiatno, Y., Effendi, H., Martin, A. N., Effendi, E., Firdaus, P., & Wagiran. (2021). Phytoremediation of iron in ex-sand mining waters by water hyacinth ( Eichhornia crassipes ). Biodiversitas, 22(2), 838–845. https://doi.org/10.13057/biodiv/d220238
Informasikesling.com.Dari http://informasikesling.blogspot.com/2016/10/aerasi-pengertian-tujuan-dan-berbagai.html?m=1 (Diakses 31 Oktober 2022)
Isaac, A., O, S. S., O, E. A., DO, A., & KO, O. (2022). Mitigating Iron and Manganese Pollution in Groundwater Using 2GDWP Method , Edo North, Nigeria. Insights In Mining Science & Techonology, 3(3). https://doi.org/10.19080/IMST.2022.03.555615
Khan, Q., Zahoor, M., Salman, S. M., Wahab, M., Khan, F. A., Gulfam, N., & Zekker, I. (2022). Removal of Iron ( II ) from Effluents of Steel Mills Using Chemically Modified Pteris vittata Plant Leaves Utilizing the Idea of Phytoremediation. Water, 14.
Lahkar, M., & Bhattacharyya, K. G. (2019). Heavy Metal Contamination of Groundwater in Guwahati City, Assam, India. International Research Journal of Engineering and Technology, 6(June), 1520–1525. www.irjet.net
Madhav, S., Ahamad, A., Singh, A. K., Kushawaha, J., Chauhan, J. S., Sharma, S., & Singh, P. (2020). Water Pollutants: Sources and Impact on the Environment and Human Health. Springer, 43–62. https://doi.org/10.1007/978-981-15-0671-0_4
Mardalena, M.Faizal, & Napoleon, A. (2018). The Absorption of Iron (Fe) and Manganese (Mn) from Coal Mining Wastewater with Phytomediation Technique Using Floting Fern (Salvinia natans), Water Lettuce (Pistia stratiotes) and Water Hyacinth (Eichornia Crassipes). Biological Research Journal, 4(1), 1–4.
Mumbi, A. W., & Watanabe, T. (2022). Cost Estimations of Water Pollution for the Adoption of Suitable Water Treatment Technology. Sustainability (Switzerland), 14(2), 1–16. https://doi.org/10.3390/su14020649
Mustafa, H. M., & Hayder, G. (2021). Recent studies on applications of aquatic weed plants in phytoremediation of wastewater. Ain Shams Engineering Journal, 12(1), 355–365. https://doi.org/10.1016/j.asej.2020.05.009
Nielsen, P. H., Gernaey, K. V, Wang, Q., Gro, U., Nierychlo, M., Hansen, S. H., Thomsen, L., & Flores-alsina, X. (2022). The effects of low oxidation-reduction potential on the performance of full-scale hybrid membrane-aerated biofilm reactors. Chemical Engineering Journal, 451. https://doi.org/10.1016/j.cej.2022.138917
Papagiannaki, D., Belay, M. H., Gonçalves, N. P. F., Robotti, E., Bianco-Prevot, A., Binetti, R., & Calza, P. (2022). From monitoring to treatment, how to improve water quality: The pharmaceuticals case. Chemical Engineering Journal Advances, 10, 100245. https://doi.org/10.1016/j.ceja.2022.100245
Ram, A., Pandey, S. K. T. H. K., Kumar, A., Supriya, C., & Singh, S. Y. V. (2021). Groundwater quality assessment using water quality index ( WQI ) under GIS framework. Applied Water Science.
Razif, M. F. S. M., Remy, M., Mohd, R., & Zainol, A. (2020). Effect of Cascade Aerator Height and Flow Rate on Removal of Iron and Manganese from Groundwater at Rumah Nur Kasih. IOP Conference Series : Materials Science And Engineering. https://doi.org/10.1088/1757-899X/864/1/012135
Rozainy, M. R., J, R., & Abas, A. (2020). Simulation Of Oxidised Iron And Manganese Particles In Cascade Aerator Model By Using Dispersed Phase Method. Academia, 11(11).
Sari, Y., & Yulis, P. A. R. (2021). Reduction of Fe Levels in Groundwater Using Aeration - Filtration Method with Tray Aerator System. Alkimia : Jurnal Ilmu Kimia Dan Terapan, 5(113), 110–115.
Sun, C., Wang, G., Sun, C., Liu, R., Zhang, Z., Marhaba, T., & Zhang, W. (2021). Optimization of iron removal in water by nanobubbles using response surface methodology. Water Science and Technology: Water Supply, 21(4), 1608–1617. https://doi.org/10.2166/WS.2021.042
Syazwan, M. ., Rozainy, M. R., & Jamil, R. (2020). Removing Iron and Manganese by Using Cascade Aerator and Limestone Horizontal Roughing Filters Removing Iron and Manganese by Using Cascade Aerator and Limestone Horizontal Roughing Filters. IOP Conference Series : Materials Science And Engineering. https://doi.org/10.1088/1757-899X/864/1/012006
Tasneem, A., Ahmed, T., & Uddin, M. K. (2020). Determination of Arsenic (As) and Iron (Fe) Concentration in Ground Water and Associated Health Risk by Arsenic Contamination in Singair Upazila, Manikganj District, Bangladesh. Asian Journal of Environment & Ecology, August, 32–41. https://doi.org/10.9734/ajee/2020/v13i230178
van de Griend, M. V., Warrener, F., van den Akker, M., Song, Y., Fuchs, E. C., Loiskandl, W., & Agostinho, L. L. F. (2022). Vortex Impeller-Based Aeration of Groundwater. Water (Switzerland), 14(5). https://doi.org/10.3390/w14050795
Yazid, E. A., Wafi, A., & Saraswati, A. (2021). Techniques for Reducing Iron (Fe) Content in Groundwater: an Article Review. Journal of Islamic Pharmacy, 6(1), 40–45. https://doi.org/10.18860/jip.v6i1.12078.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.