Kemungkinan Dampak Neuroprotektif dari Makanan dan Minuman Fermentasi di Usia Tua: Study Literature

Authors

  • Hendri Maryanto Fakultas Kesehatan Masyarakat, Universitas Sriwijaya
  • Anita Rahmiwati Fakultas Kesehatan Masyarakat, Universitas Sriwijaya
  • Misnaniarti Misnaniarti Fakultas Kesehatan Masyarakat, Universitas Sriwijaya
  • Haerawari Idris Fakultas Kesehatan Masyarakat, Universitas Sriwijaya

DOI:

https://doi.org/10.32583/pskm.v14i2.1878

Keywords:

diet, makanan dan minuman fermentasi, penyakit alzheimer

Abstract

Beberapa tahun terakhir telah melihat sejumlah besar makalah meneliti peran bakteri usus dalam gangguan neurologis. Antara lain, penuaan terkait dengan modifikasi mikrobioma, yang menunjukkan penurunan kekayaan mikroba. Mempelajari peran makanan fermentasi dalam pencegahan penyakit neurodegeneratif tampaknya bermanfaat, mengingat bahwa konsumsinya meningkatkan permeabilitas usus dan fungsi penghalang. Tujuan artikel ini adalah untuk meninjau literatur untuk menentukan apakah mengkonsumsi makanan dan minuman fermentasi dapat mencegah atau mengobati kerusakan neurologis pada orang dewasa yang lebih tua. Item Pelaporan yang direkomendasikan untuk Tinjauan Sistematis dan Meta-Analisis (PRISMA) pedoman diikuti dalam melaksanakan protocol ditemukan di database Perpustakaan Pubmed, Scopus, dan Cochrane melihat hubungan antara konsumsi produk fermentasi dan penurunan kognitif pada orang dewasa yang lebih tua (22).Dari 465 publikasi yang di identifikasi hanya 29 artikel yang digunakan. Temuan ini menyiratkan bahwa penurunan insiden demensia terkait dengan konsumsi alkohol rendah hingga sedang serta konsumsi kopi, produk kedelai, dan makanan fermentasi secara teratur secara umum. Konsumsi makanan dan minuman fermentasi secara teratur, baik sendiri atau dalam kombinasi dengan diet, telah terbukti memiliki sifat neuroprotektif dan menunda timbulnya penurunan kognitif pada orang dewasa yang lebih tua.

References

Aslam, H., Green, J., Jacka, F. N., at all (2020). Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety. Nutritional Neuroscience, 23(9), 659–671. https://doi.org/10.1080/1028415X.2018.1544332

Bäckhed, F., Ley, R. E., Sonnenburg, at all (2005). Host-bacterial mutualism in the human intestine. In Science (Vol. 307, Issue 5717, pp. 1915–1920). https://doi.org/10.1126/science.1104816

Baldi, S., Mundula, T., Nannini, G., at all (2021). Microbiota shaping - The effects of probiotics, prebiotics, and fecal microbiota transplant on cognitive functions: A systematic review. In World Journal of Gastroenterology (Vol. 27, Issue 39, pp. 6715–6732). Baishideng Publishing Group Inc.https://doi.org/10.3748/wjg.v27.i39.6715

Bell, V., Ferrão, J., Pimentel, L., at all (2018). One health, fermented foods, and gut microbiota. In Foods (Vol. 7, Issue 12). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods7120195

Bernardi, S., Del Bo, C., Marino, M., at all (2020). Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. In Journal of Agricultural and Food Chemistry (Vol. 68, Issue 7, pp. 1816–1829). American Chemical Society. https://doi.org/10.1021/acs.jafc.9b02283

Binns, N. (2013). Probiotics, prebiotics and the gut microbiota. Probiotics, Prebiotics and the Gut Microbiota.

Cervilla, J. A., Prince, M., & Mann, A. (2000). Smoking, drinking, and incident cognitive impairment: A cohort community based study included in the Gospel Oak project. Journal of Neurology Neurosurgery and Psychiatry, 68(5), 622–626. https://doi.org/10.1136/jnnp.68.5.622

Chandra, S., Sisodia, S. S., & Vassar, R. J. (2023). The gut microbiome in Alzheimer’s disease: what we know and what remains to be explored. In Molecular Neurodegeneration (Vol. 18, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13024-023-00595-7

Clos-Garcia, M., Andrés-Marin, N., Fernández-Eulate, at all (2019). Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia. EBioMedicine, 46, 499–511. https://doi.org/10.1016/j.ebiom.2019.07.031

Cook, P. E. (1994). Fermented foods as biotechnological resources. Food Research International, 27(3), 309–316. https://doi.org/10.1016/0963-9969(94)90099-X

Dahiya, D., & Nigam, P. S. (2023). Antibiotic-Therapy-Induced Gut Dysbiosis Affecting Gut Microbiota—Brain Axis and Cognition: Restoration by Intake of Probiotics and Synbiotics. In International Journal of Molecular Sciences (Vol. 24, Issue 4). MDPI. https://doi.org/10.3390/ijms24043074

Dimidi, E., Cox, S. R., Rossi, M., at all (2019). Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. In Nutrients (Vol. 11, Issue 8). MDPI AG. https://doi.org/10.3390/nu11081806

Engelhart, M. J., Geerlings, M. I., Ruitenberg, A., at all (2022). Dietary Intake of Antioxidants and Risk of Alzheimer Disease. www.jama.com

Fischer, K., van Lent, D. M., Wolfsgruber, S., at all (2018). Prospective associations between single foods, Alzheimer’s dementia and memory decline in the elderly. Nutrients, 10(7). https://doi.org/10.3390/nu10070852

Foligné, B., Parayre, S., Cheddani, R., at all (2016). Immunomodulation properties of multi-species fermented milks. Food Microbiology, 53, 60–69. https://doi.org/10.1016/J.FM.2015.04.002

Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. In Nature Neuroscience (Vol. 20, Issue 2, pp. 145–155). Nature Publishing Group. https://doi.org/10.1038/nn.4476

Gu, Y., Scarmeas, N., Short, E. E., at all (2014). Alcohol intake and brain structure in a multiethnic elderly cohort. Clinical Nutrition, 33(4), 662–667. https://doi.org/10.1016/J.CLNU.2013.08.004

Hayden, K. M., Beavers, D. P., Steck, S. E., at all (2017). The association between an inflammatory diet and global cognitive function and incident dementia in older women: The Women’s Health Initiative Memory Study. Alzheimer’s & Dementia, 13(11), 1187–1196. https://doi.org/10.1016/J.JALZ.2017.04.004

Hébert, R., Lindsay, J., Verreault, R., at all (2000). Vascular Dementia Incidence and Risk Factors in the Canadian Study of Health and Aging. http://ahajournals.org

Herzog, R., Álvarez-Pasquin, M. J., Díaz, C., at all (2013). Are healthcare workers intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. In BMC Public Health (Vol. 13, Issue 1). https://doi.org/10.1186/1471-2458-13-154

Huang, W., Qiu, C., Winblad, B., at all (2002). Alcohol consumption and incidence of dementia in a community sample aged 75 years and older. Journal of Clinical Epidemiology, 55(10), 959–964. https://doi.org/10.1016/S0895-4356(02)00462-6

Humana Dietética, N. (2014). Revista Española de Spanish Journal of Human Nutrition and Dietetics O R I G I N A L. In Rev Esp Nutr Hum Diet (Vol. 18, Issue 3). http://medicine.

Innerarity1, T. L., Mahley, R. W., & Innerarity1, T. L. (1978). Enhanced Binding by Cultured Human Fibroblasts of Apo-E-Containing Lipoproteins as Compared with Low Density Lipoproteins. Biochemistry, 17(8), 1440–1447. https://doi.org/10.1021/BI00601A013/ASSET/BI00601A013.FP.PNG_V03

Köbe, T., Witte, A. V., Schnelle, A., at all (2017). Impact of resveratrol on glucose control, hippocampal structure and connectivity, and memory performance in patients with mild cognitive impairment. Frontiers in Neuroscience, 11(MAR). https://doi.org/10.3389/fnins.2017.00105

Koblinsky, N. D., Power, K. A., Middleton, L., at all (2023). The Role of the Gut Microbiome in Diet and Exercise Effects on Cognition: A Review of the Intervention Literature. In The journals of gerontology. Series A, Biological sciences and medical sciences (Vol. 78, Issue 2, pp. 195–205). NLM (Medline). https://doi.org/10.1093/gerona/glac166

Leblhuber, F., Steiner, K., Schuetz, B., at all (2018). Probiotic Supplementation in Patients with Alzheimer’s Dementia - An Explorative Intervention Study. Current Alzheimer Research, 15(12), 1106–1113. https://doi.org/10.2174/1389200219666180813144834

Mahley, R. W., Bersot, T. P., Lequire, at all (1970). Identity of Very Low Density Lipoprotein Apoproteins of Plasma and Liver Golgi Apparatus. Science, 168(3929), 380–382. https://doi.org/10.1126/SCIENCE.168.3929.380

Marco, M. L., Heeney, D., Binda, S., at all (2017). Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102. https://doi.org/10.1016/J.COPBIO.2016.11.010

McIntosh, A. M., Bennett, C., Dickson, at all (2012). The Apolipoprotein E (APOE) Gene Appears Functionally Monomorphic in Chimpanzees (Pan troglodytes). PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0047760

Minerbi, A., Gonzalez, E., Brereton, at all (2019). Altered microbiome composition in individuals with fibromyalgia. Pain, 160(11),2589–2602.https://doi.org/10.1097/j.pain.0000000000001640

Mirzaei, R., Bouzari, B., Hosseini-Fard, at all (2021). Role of microbiota-derived short-chain fatty acids in nervous system disorders. In Biomedicine and Pharmacotherapy (Vol. 139). Elsevier Masson s.r.l. https://doi.org/10.1016/j.biopha.2021.111661

Moher, D., Shamseer, L., Clarke, M., at all (2016). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Revista Espanola de Nutricion Humana y Dietetica, 20(2), 148–160. https://doi.org/10.1186/2046-4053-4-1

Oak, S. J., & Jha, R. (2019). The effects of probiotics in lactose intolerance: A systematic review. Critical Reviews in Food Science and Nutrition, 59(11), 1675–1683. https://doi.org/10.1080/10408398.2018.1425977

Ogunniyi, A., Hall, K. S., Gureje, O., at all (2006). Risk factors for incident Alzheimer’s disease in African Americans and Yoruba. Metabolic Brain Disease, 21(2–3), 235–240. https://doi.org/10.1007/S11011-006-9017-2/METRICS

Perez-Pardo, P., Kliest, T., Dodiya, at all (2017). The gut-brain axis in Parkinson’s disease: Possibilities for food-based therapies. European Journal of Pharmacology, 817, 86–95. https://doi.org/10.1016/j.ejphar.2017.05.042

Pistollato, F., Cano, S. S., Elio, I., at all (2016). Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutrition Reviews, 74(10), 624–634. https://doi.org/10.1093/nutrit/nuw023

Power, S. E., O’Toole, P. W., Stanton, at all (2014). Intestinal microbiota, diet and health. In British Journal of Nutrition (Vol. 111, Issue 3, pp. 387–402). https://doi.org/10.1017/S0007114513002560

PROSPERO. (2023). International prospective register of systematic reviews Registering a review on PROSPERO What does registration on PROSPERO involve?

Quigley, E. M. M. (2017). Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Current Neurology and Neuroscience Reports, 17(12), 1–9. https://doi.org/10.1007/S11910-017-0802-6/METRICS

Reid, G., Younes, J. A., Van Der Mei, at all (2010). Microbiota restoration: natural and supplemented recovery of human microbial communities. Nature Reviews Microbiology 2011 9:1, 9(1), 27–38. https://doi.org/10.1038/nrmicro2473

Rogers, G. B., Keating, D. J., Young, at all (2016). From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. In Molecular Psychiatry (Vol. 21, Issue 6, pp. 738–748). Nature Publishing Group. https://doi.org/10.1038/mp.2016.50

Savignac, H. M., Corona, G., Mills, H., at all (2013). Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochemistry International, 63(8), 756–764. https://doi.org/10.1016/j.neuint.2013.10.006

Sharma, R., Gupta, D., Mehrotra, R., at all (2021). Psychobiotics: The Next-Generation Probiotics for the Brain. Current Microbiology, 78(2), 449–463. https://doi.org/10.1007/S00284-020-02289-5/METRICS

Shen, J., Zuo, Z. X., & Mao, A. P. (2014). Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn’s disease, and pouchitis: Meta-analysis of randomized controlled trials. In Inflammatory Bowel Diseases (Vol. 20, Issue 1, pp. 21–35). Lippincott Williams and Wilkins. https://doi.org/10.1097/01.MIB.0000437495.30052.be

Shimizu, Y. (2018). Gut microbiota in common elderly diseases affecting activities of daily living. In World Journal of Gastroenterology (Vol. 24, Issue 42, pp. 4750–4758). Baishideng Publishing Group Co. https://doi.org/10.3748/wjg.v24.i42.4750

Sienski, G., Narayan, P., Bonner, J. M., at all (2021). APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Science Translational Medicine, 13(583). https://doi.org/10.1126/SCITRANSLMED.AAZ4564/SUPPL_FILE/AAZ4564_SM.PDF

Silva, Y. P., Bernardi, A., & Frozza, R. L. (2020). The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. In Frontiers in Endocrinology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fendo.2020.00025

Singh, R. K., Chang, H. W., Yan, D at all (2017). Influence of diet on the gut microbiome and implications for human health. In Journal of Translational Medicine (Vol. 15, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12967-017-1175-y

Sochocka, M., Donskow-Łysoniewska, K., Diniz, B. S., at all (2019). The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—a Critical Review. In Molecular Neurobiology (Vol. 56, Issue 3, pp. 1841–1851). Humana Press Inc. https://doi.org/10.1007/s12035-018-1188-4

Stelzma, R. A., Norman Schnitzlein, H., & Murllagh, F. R. (1995). An English I’ranslation of Alzheimer’s 1907 Paper, “ijber eine eigenartige Erlranliung der Hirnrinde.” In Clinical Anatomy (Vol. 8).

Stephenson, B. J. K., & Willett, W. C. (2023). Racial and ethnic heterogeneity in diets of low-income adult females in the United States: results from National Health and Nutrition Examination Surveys from 2011 to 2018. American Journal of Clinical Nutrition, 117(3), 625–634. https://doi.org/10.1016/j.ajcnut.2023.01.008

Strasser, B., & Ticinesi, A. (2023). Intestinal microbiome in normal ageing, frailty and cognition decline. Current Opinion in Clinical Nutrition and Metabolic Care, 26(1), 8–16. https://doi.org/10.1097/MCO.0000000000000878

Strittmatter, W. J., Weisgraber, K. H., Huang, D. at all(1993). Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proceedings of the National Academy of Sciences, 90(17), 8098–8102. https://doi.org/10.1073/PNAS.90.17.8098

Tarja. (2005). Binge Drinking in Midlife and Dementia Risk on JSTOR. https://www.jstor.org/stable/20486141

Thangaleela, S., Sivamaruthi, B. S., Kesika, P., at all (2022). Role of Probiotics and Diet in the Management of Neurological Diseases and Mood States: A Review. In Microorganisms (Vol. 10, Issue 11). MDPI. https://doi.org/10.3390/microorganisms10112268

Tillisch, K., Labus, J., Kilpatrick, L., at all (2013). Consumption of Fermented Milk Product With Probiotic Modulates Brain Activity. Gastroenterology, 144(7), 1394-1401.e4. https://doi.org/10.1053/J.GASTRO.2013.02.043

Tomova, A., Bukovsky, I., Rembert, E., at all (2019). The effects of vegetarian and vegan diets on gut microbiota. In Frontiers in Nutrition (Vol. 6). Frontiers Media S.A. https://doi.org/10.3389/fnut.2019.00047

Varankovich, N. V., Nickerson, M. T., & Korber, D. R. (2015). Probiotic-based strategies for therapeutic and prophylactic use against multiple gastrointestinal diseases. Frontiers in Microbiology, 6(JUN). https://doi.org/10.3389/fmicb.2015.00685

Veronica Witte, A., Kerti, L., Margulies, D. S., at all (2014). Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. Journal of Neuroscience, 34(23), 7862–7870. https://doi.org/10.1523/JNEUROSCI.0385-14.2014

Vogt, N. M., Kerby, R. L., Dill-McFarland, at all (2017). Gut microbiome alterations in Alzheimer’s disease. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-13601-y

Wang, D., Ho, L., Faith, J., at all (2015). Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Molecular Nutrition and Food Research, 59(6), 1025–1040. https://doi.org/10.1002/mnfr.201400544

Wells, G., Shea, B., Robertson, J., at all (2015). The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analysis.

Yanwen Low, D., Lefèvre-Arbogast, S., González-Domínguez, R., at all (2019). Diet-Related Metabolites Associated with Cognitive Decline Revealed by Untargeted Metabolomics in a Prospective Cohort. Molecular Nutrition & Food Research, 63(18), 1900177. https://doi.org/10.1002/MNFR.201900177

Zhang, Y., Cheng, L., Liu, Y., at all (2023). Dietary flavonoids: a novel strategy for the amelioration of cognitive impairment through intestinal microbiota. Journal of the Science of Food and Agriculture, 103(2), 488–495. https://doi.org/10.1002/JSFA.12151

Zhu, S., Jiang, Y., Xu, K., at all (2020). The progress of gut microbiome research related to brain disorders. In Journal of Neuroinflammation (Vol. 17, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12974-020-1705-z

Downloads

Published

2023-11-30

How to Cite

Maryanto, H., Rahmiwati, A. ., Misnaniarti, M., & Idris, H. . (2023). Kemungkinan Dampak Neuroprotektif dari Makanan dan Minuman Fermentasi di Usia Tua: Study Literature. Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, 14(2), 783–802. https://doi.org/10.32583/pskm.v14i2.1878

Most read articles by the same author(s)