Simpatektomi Jantung pada Hewan Coba yang Diinduksi 6-Hidroksidopamin

Authors

  • Dian Rahadianti Fakultas Kedokteran, Universitas Islam AlAzhar Mataram

Keywords:

hewan model, penyakit kardiovaskular, simpatektomi, 6-OHDA

Abstract

Kelainan saraf otonom merupakan gambaran patofisiologi dari beberapa penyakit kardiovaskular. Pentingnya pemahaman terhadap patofisiologi dan pengembangan terapi baru pada penyakit kardiovaskular mendorong perkembangan strategi dalam membuat model hewan coba dengan kondisi yang melibatkan saraf otonom (simpatektomi). Penelitian ini bertujuan untuk melihat pengaruh simpatektomi jantung pada hewan coba yang diinduksi 6-hidroksidopamin.  Metode: Penelitian ini bersifat literature review dengan menggunakan artikel yang menggunakan metode simpatektomi kimiawi 6-hidroksidopamin (6-OHDA). Peranan pada kerja selektif 6-OHDA dalam menimbulkan kerusakan postganglion simpatik dalam menginduksi neurodegenerasi simpatik jantung dapat disarankan dengan mempertimbangkan pemilihan metode/rute administrasi, dosis dan jenis/strain hewan coba yang digunakan. Kesimpulan: Penggunaan 6-OHDA dalam membuat model hewan coba dengan denervasi simpatik dapat disarankan dalam mengevaluasi strategi pemodifikasian penyakit yang bertujuan untuk pengembangan terapi.

References

Barrett, K.E., Barman, S.M., Boitano, S., Brooks, H., 2012.Ganong's Review of Medical Physiology. 24th Ed. McGraw-Hill Medical, New York

Blum, D., Torch, S., Lambeng, N., Nissou, M-. F., Benabid, A-. L., Sadoul, R., Verna, J-. M., 2001. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65: 135–172.

Demas G.E., Bartness, T.J., 2001. Novel method for localized, functional sympathetic nervous system denervation of peripheral tissue using guanethidine. J Neurosc Methods 112: 21–28

DiBona, G.F., Sawin, L.L., 2004. Effect of renal denervation on dynamic autoregulation of renal blood flow. Am J Physiol Renal Physiol 286(6): F1209–18.

Esler M, Lambert E, Schlaich M, 2016.Point: chronic activation of the sympathetic nervous system is the dominant contributor to systemic hypertension. J Appl Physiol 109:1996–1998.

Finch, L., Haeusler, G., Thoenen, H., 1973. A comparison of the effects of chemical sympathectomy by 6-hydroxydopamine in newborn and adult rats. Br J Pharmac 47: 249-260.

Gauthier, P., Nadeau, R., De Champlain, J., 1972. Acute and chronic cardiovascular effects of 6-hydroxydopamine in dogs. Circ Res 31: 207–217.

Ghorayeb, I., Stefanova, N., Fernagut, P-O., Wenning, G. K., Francoistison, 2005. Double-Lesion Animal Models of Multiple System Atrophy in Animal Models of Movement Disorders. Academic Press: Elsevier.

Guyton and Hall Textbook of Medical Physiology. 12th ed. Saunders, Philadelphia

Jiang, Y-.H., Jiang, P., Yang, J-.L., Ma, D-.F., Lin, H-.Q., Su, W., et al, 2015. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation. PLoS ONE 10(7): e0133971.

Joers, V., Dilley, K., Rahman, S., Jones, C., Shultz1, J., Simmons, H., Emborg, M.E., 2014. Cardiac Sympathetic Denervation in 6-OHDA-Treated Nonhuman Primates. PLoS One 9(8): e104850.

Joers, V., Seneczko, K., Goecks., N.C., Kamp, T.J., Hacker, T.A., et al, 2012. Nonuniform cardiac denervation observed by 11C-meta-hydroxyephedrine PET in 6-OHDA-treated monkeys. PLoS One 7: e35371.

Kishi T. Heart failure as an autonomic nervous system dysfunction. J Cardiol 2012; 59:117–22.

Kostrzewa, R.M., Jacobowitz, D.M., 1974. Pharmacological actions of 6-hydroxydopamine. Pharmacol Rev 26: 199–288.

Kreipke, R.E dan S. J. Birren, 2015. The Journal of Physiology Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal. J Physiol 593 (23): 5057–5073

Leak, R.H, Zigmond, M.J., 2008. Endogenous Defenses that Protect Dopamine Neurons: Studies with 6-ohda Models of Parkinson's Disease. In: Parkinson's disease: molecular and therapeutic insights from model systems. Boston: Elsevier/Academic Press.

Malpas, S.C., 2010. Sympathetic Nervous System Overactivity and Its Role in the Development of Cardiovascular Disease. Physiol Rev 90: 513–557

Nielsen G.D., 1977. Guanethidine induced sympathectomy in the adult rat. II. Functional effects following chronic administration. Acta Pharmacol Toxicol: 41(3):209-217.

Nillsson, A.C., 2010. 6-OH Dopamine Rat Model in Encyclopedia of Movement Disorders. Academic Press, 3-53

Picklo, M.J., 1997. Methods of sympathetic degeneration and alteration. J Auton Nerv Syst 62: 111–125

Simola, N., Morelli, M., Carta, A.R., 2007. The 6-hydroxydopamine model of Parkinson's disease. Neurotox Res 11(3-4):151-167.

Tortora, G.J., and Derrickson, B., 2014. Principles of Anatomy & Physiology. 14th Ed. Wiley, Hooboken.

Triposkiadis, F., Karayannis, G., Giamouzis, G., Skoularigis, J, Louridas, J., Butler, J., 2009. The Sympathetic Nervous System in Heart Failure Physiology, Pathophysiology, and Clinical Implications. J Am Coll Cardiol 54 (19): 1747-1762.

Widmaier, E., Raff, H., Strang, K., 2013. Vander's Human Physiology: The Mechanisms of Body Function. McGraw-Hill, Boston.

Zaglia, T., Milan, G., Franzoso, M., Bertaggia, E., Pianca, N., Piasentini, E., et al, 2013. Cardiac sympathetic neurons provide trophic signal to the heart via b2-adrenoceptor-dependent regulation of proteolysis. Cardiovasc Res 97: 240–250.

Downloads

Published

2022-07-28

How to Cite

Rahadianti, D. (2022). Simpatektomi Jantung pada Hewan Coba yang Diinduksi 6-Hidroksidopamin. Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, 12(3), 411–422. Retrieved from https://journal2.stikeskendal.ac.id/index.php/PSKM/article/view/371